Transplication as Implication

Simon D'Alfonso

February 24, 2010

In his contribution on partial logic to the Handbook of Philosophical Logic [m], Stephen Blamey introduces a 'value gap introducing' connective named 'transplication' (/) to the standard 3 -valued partial logic, the Strong Kleene logic. Where t stands for 'true', f stands for 'false' and n stands for 'neither true nor false', the truth table for this connective is:

$/$	1	n	0
1	1	n	0
n	n	n	n
0	n	n	n

Blamey suggests the possibility of reading the transplication connective as a type of conditional. Basically, the idea is that conditional sentences of the form 'if A then B ' are neither true nor false when A is false. They are also neither true nor false when either A or B is neither true nor false. I was interested to see how the transplication connective fares as a conditional by testing it against a list of inferences concerning conditionals. Here are the results:

$(1) q \vDash p / q$	\times
$(2) \neg p \vDash p / q$	\times
$(3)(p \wedge q) / r \vDash(p / r) \vee(q / r)$	\checkmark
$(4)(p / q) \wedge(r / s) \vDash(p / s) \vee(r / q)$	$\sqrt{ }$
$(5) \neg(p / q) \vDash p$	\checkmark
$(6) p / r \vDash(p \wedge q) / r$	\times
$(7) p / q, q / r \vDash p / r$	\checkmark
$(8) p / q \vDash \neg q / \neg p$	\times
$(9) \vDash p /(q \vee \neg q)$	\times
$(10) \vDash(p \wedge \neg p) / q$	\times

Paraconsistent Transplication

What would the transplication connective look like when added to the 3 -valued $\mathbb{L P}$ (Logic of Paradox), which treats the third truth value b as both true and false. Well, to begin with, application of the transplication connective's behaviour to the truth value b forces a step outside of the 3 -valued system into a 4 -valued system, with truth values n (again neither true nor false) plus b. This transplication connective thus finds a home in the many-valued logic FDE (First Degree Entailment) system. The truth table for this connective is:

$/$	1	b	n	0
1	1	b	n	0
b	1	b	n	0
n	n	n	n	n
0	n	n	n	n

Here are the results for the transplication connective based on the logic $F D E$, which turns out to be the same as that for the transplication connective based on Strong Kleene logic:

$(1) q \vDash p / q$	\times
$(2) \neg p \vDash p / q$	\times
$(3)(p \wedge q) / r \vDash(p / r) \vee(q / r)$	$\sqrt{ }$
$(4)(p / q) \wedge(r / s) \vDash(p / s) \vee(r / q)$	$\sqrt{ }$
$(5) \neg(p / q) \vDash p$	$\sqrt{ }$
$(6) p / r \vDash(p \wedge q) / r$	\times
$(7) p / q, q / r \vDash p / r$	\checkmark
$(8) p / q \vDash \neg q / \neg p$	\times
$(9) \vDash p /(q \vee \neg q)$	\times
$(10) \vDash(p \wedge \neg p) / q$	\times

References

[1] Blamey, Stephen. 'Partial Logic', In D. Gabbay and F. Guenthner, (eds.). Handbook of Philosophical Logic Volume III. Dordrecht, D. Reidel Publishing Company, 1986, pp. 1-70.

