## 1 A translation of $K_3$ into Modal Logic

In [1] a translation from any formula A of  $K_3$  to a formula  $A^{\square}$  of modal logic is specified as follows:

- $\neg$  stands for  $K_3$  negation and  $\sim$  stands for classical negation
- $(p)^{\square} := \square p$
- $(\neg p)^{\square} := \square \sim p$
- $(A \wedge B)^{\square} := A^{\square} \wedge B^{\square}$
- $(A \vee B)^{\square} := A^{\square} \vee B^{\square}$

(Note: no translation for the negation of arbitrary formulas is given, but we can just convert  $K_3$  formulas into negation normal form.)

The sequent  $A \vdash B$  is provable in  $K_3$  iff the translated formula  $A^{\square} \supset B^{\square}$  is a consequence of the 'Deontic' axiom **D**:

$$\Box p \supset \Diamond p$$

where only *non-modal* inference steps are used.

The reason why this holds is that the proofs in  $K_3$  essentially carry over into modal logic, and the fundamental  $\sim (p \wedge \neg p)$  becomes  $\sim (\Box p \wedge \Box \sim p)$ , easily seen to be equivalent to **D**. After the transformation  $\Box p$  and  $\Box \sim p$  still behave like distinct variables.

This translation is very simple, but it is interesting to see how various three-valued inferences translate into modal formulas. For example, the sequent  $p \vdash q \lor \neg q$  becomes  $\Box p \supset (\Box q \lor \Box \sim q)$ , which is not provable from **D**. On the other hand, the correct  $\neg p \vdash \sim p$  becomes  $\Box \sim p \supset \sim \Box p$ , essentially the same as **D**.

It is not necessary to be very specific about the target modal language. [1, p. 73.]

I take this to mean that the normal modal logic  $K + \mathbf{D}$  will do.

## 2 A translation of LP into Modal Logic

The following seems to work. We have the same translation:

- $\neg$  stands for LP negation and  $\sim$  stands for classical negation
- $(p)^{\square} := \square p$
- $\bullet \ (\neg p)^{\square} := \square \sim p$

<sup>&</sup>lt;sup>1</sup>There is a typo in the text, which has  $(A \vee B)^{\square} := A^{\square} \vee B$ 

- $\bullet \ (A \wedge B)^{\square} := A^{\square} \wedge B^{\square}$
- $(A \vee B)^{\square} := A^{\square} \vee B^{\square}$

The sequent  $A \vdash B$  is provable in LP iff the translated formula  $A^{\square} \supset B^{\square}$  is provable in the normal modal logic  $K + \mathbf{CD}$ , where  $\mathbf{CD}$  is the 'Uniqueness' axiom:

$$\Diamond A \supset \Box A$$

Here are some examples:

- $p \land \neg p \nvdash_{LP} q$ 
  - $p^{\square} \wedge \neg p^{\square} \vdash q^{\square}$
  - $\Box p \wedge \Box \sim p \nvdash \Box q$
- $q \vdash_{LP} p \lor \neg p$ 
  - $-\ q^{\square} \vdash p^{\square} \vee \neg p^{\square}$
  - $\Box q \vdash \Box p \lor \Box \sim p$
- $p \wedge (\neg p \vee q) \nvdash_{LP} q$ 
  - $-p^{\square} \wedge (\neg p \vee q)^{\square} \nvdash q^{\square}$
  - $\ \Box p \wedge (\Box \sim p \vee \Box q) \nvdash \Box q$

## References

[1] Busch, Douglas, 'Sequent Formalizations of Three-Valued Logic'. In Patrick Doherty (ed.) Partiality, Modality and Nonmonotonicity. CSLI Publications, 1996, pp. 45-75.