An Overview of the Mathematical Theory of Communication
Particularly for Philosophers Interested in Information

Simon D’Alfonso

The Mathematical Theory of Communication (or Information Theory as it is also known as) was
developed primarily by Claude Shannon in the 1940s [I0]. It measures the information (structured
data) generated by an event (outcome) in terms of the event’s statistical probability and is concerned
with the transmission of such structured data over (noisy) communication channels.

The Shannon/Weaver communication model with which MTC is concerned is given in Figure
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Figure 1: Shannon Weaver communication model ([6])

A good example of this model in action is Internet telephony. John says ‘Hello Sally’ in starting
a conversation with Sally over Skype. John is the informer or information source and the words
he utters constitute the message. His computer receives this message via its microphone and
digitally encodes it in preparation for transmission. The encoding is done in a binary alphabet,
consisting conceptually of ‘0’ and ‘1’s. The signal for this encoded message is sent over the Internet,
which is the communication channel. Along the way some noise is added to the message, which
interferes with the data corresponding to ‘Sally’. The received signal is decoded by Sally’s computer,
converted into audio and played through the speakers. Sally, the informee at the information
destination, hears ‘Hello Sal**’, where * stands for unintelligible crackles due to the noise in the
decoded signalﬂ

!The applicability of this fundamental general communication model goes beyond MTC and it underlies many
accounts of information and its transmission.

2Despite the simplicity of this high-level account, it adequately illustrates the fundamental components involved.
Beyond this account there are richer ones to be given. Firstly, each process can be explained in greater degrees
of detail. Secondly, this communication model can apply to other processes in the whole picture; for example, the
communication involved in the transmission of sound from Sally’s ear to a signal in her brain.



In order to successfully carry out such communication, there are several factors that need to
be worked out. What is the (minimum) amount of information required for the message and how
can it be encoded? How can unwanted equivocation and noise in the communication channel be
dealt with? What is the channel’s capacity and how does this determine the ultimate rate of data
transmission? Since MTC addresses these questions it plays a central role in achieving the execution
of this model. Here is a brief outline of the basic mathematical ideas behind MTCPF]

Let S stand for some event/outcome/source which generates/emits symbols in some alphabet
A which consists of n symbols. As three examples of this template, consider the following:

1. S is the tossing of a coin. A consists of two symbols, ‘heads’ and ‘tails’.
2. S is the rolling of a die. A consists of six symbols, the numbers 1-6.

3. Sis the drawing of a name in an eight-person raffle. A consists of each of the eight participants
names.

The information measure associated with an event is proportional to the amount of certainty
it reduces. For an event where all symbols have an equal probability of occurring, the probability
of any one event occurring is % The greater n is to begin with, the greater the number of initial
possibilities, therefore the greater the reduction in uncertainty or data deficit. This is made math-
ematically precise with the following formulation. Given an alphabet of n equiprobable symbols,
the information measure or entropy of the source is calculated with the following;:

logy(n) bits
Going back to the above three examples:

1. The outcome of a coin toss generates logy(2) = 1 bit of information
2. The outcome of a die roll generates log,(6) = 2.58 bits of information

3. The outcome of an eight-person raffle generates logy(8) = 3 bits of information

In cases where there is only one possible outcome uncertainty is zero and thus so is information.
In terms of card types, the random selection of a card from a standard 52-card deck generates
logy(52) = 5.7 bits of information. But the selection of a card from a deck consisting of 52 cards,
all king of spades, generates log,(1) = 0 bits of information.

Skipping over the technical details and derivations, the general formula for the entropy (H) of
a source, the average quantity of information it produces (in bits per symbol), is given by

H=- Z Pr(i)logyPr(7) bits per symbol (1)
i=1

3For a very accessible introduction to MTC, see [8]. For a considerably in-depth textbook see [3]. Shannon’s
original paper is [10].



for each of the n possible outcomes/symbols i. When all outcomes are equiprobable, this
equation reduces to the formula above. When the source’s outcomes are not all equiprobable
things become more interesting.

Let us start with a fair coin, so that Pr(‘heads’) = Pr(‘tails’) = 0.5. Plugging these figures into
Equation [I] we get:

H=—(5 xlogy(3)+ 5 xlogy(3)) = —(3 x =1+ 1 x —=1) =1 bit
which is the same as logy(2) = 1 bit.

But now consider a biased coin, such that Pr(‘heads’) = 0.3 and Pr(‘tails’) = 0.7. Plugging
these figures into equation |1}, we get:

H = —(0.3 x logy(0.3) 4+ 0.7 x logy(0.)) = —((0.3 x —1.737) + (0.7 x —0.515)) = 0.8816 bits

So the biased coin generates less information than the fair coin. This is because the overall
uncertainty in the biased coin case is less than in the fair coin case; with the former case there is a
higher chance of ‘tails’ and lower change of ‘heads’ so in a sense any outcome is less surprising. This
is all mathematically determined by the structure of the formula for H. The occurrence of some
particular symbol generates some amount of information; the lower the probability of it occurring
the higher the information generated. This is represented with the logyPr(i) part. Although a
lower probability means more information on an individual basis, with the average calculation this
is regulated and diminished with the multiplication by its own probability. This balance is why H
takes its highest value when all of a source’s potential symbols are equiprobable.

Equation [I] represents a fundamental limit. It represents the lower limit on the expected num-
ber of symbols (‘0’s and ‘1’S)E| required to devise a coding scheme for the outcomes of an event,
irrespective of the coding method employed. It represents the most efficient way that the signals for
an event can be encoded. It is in this sense that H is the unique measure of information quantity.

This point can be appreciated with the simplest of examples. Take the tossing of two fair coins (h
= heads, ¢t = tails). John is to toss the coins and communicate the outcome to Sally by sending her
a binary digital message. Since the coins are fair, Pr(h, h) = Pr(h,t) = Pr(t,h) = Pr(t,t) = 0.25.
The number of bits required to code for the tossing of these coins is two (H = 2); it is simply not
possible on average to encode this information in less than two bits. Given this, John and Sally
agree on the following encoding scheme:

o (h,h) =00
o (ht)=01
o (t,h) =10
o (t,t)=11

As an example, the string which encodes the four outcomes (h,h), (t,t), (h,t) and (h,h) is
‘00110100°.

“This is the standard set of symbols for a binary alphabet (n = 2). n is the same as the base of the logarithm
in H, which does not have to be two. A base that has also been used is ten (in this case the unit of information is
called a ‘Hartley’, in honour of Ralph Hartley, who originated the measure). Natural logarithms have also been used
(in this case the unit of information is called a ‘nat’).



Now, modify this coin scenario so that the outcomes have the following probabilities:

Given this probability distribution, H = 1.75 bits. As we have just seen, this means that the
lower limit on the average number of symbols required to code each tossing of the two coins is 1.75.
How would such an encoding go? The basic idea is to assign fewer bits to the encoding of more
probable outcomes and more bits to the encoding of less probable outcomes. Since (h,h) is the
most probable outcome, fewer bits should be used to encode it. This way, the number of expected
bits required is minimised.

The most efficient coding to capture this connection between higher probability of an outcome
and more economical representation is:

o (h,h)=0
o (h,t)=10
o (t,h) =110
o (t,t) =111

If we treat the number of bits for each outcome as the information associated with that outcome,
then we can plug these figures into the following formula and also get a calculation of 1.75:

(0.5 % 1) 4 (0.25 x 2) + (0.125 x 3) + (0.125 x 3) = 1.75 bits

In comparison to the previous example, the string which represents the four outcomes (h,h),
(t,t), (h,t) and (h,h) using this encoding scheme is the shorter ‘0111100’. This optimal encoding
scheme is the same as that which results from the Shannon-Fano coding method[]

The discussion of MTC thus far has involved fairly simple examples without any of the compli-
cations and complexities typically involved in realistic communication. To begin with, it has only
considered the information source of perfect communication channels, where data is received if and
only if it is sent. In real conditions, communications channels are subject to equivocation and noise.
The former is data that is sent but never received and the latter is data that is received but not
sent. The communication system as a whole involves both the possible outcomes that can originate
from the information source S = {si,s2,...s,} and the possible signals that can be received at
the information destination R = {ri,ra,...r,}. It is the statistical relations between S and R (the
conditional probability that an element in one set occurs given the occurrence of an element from
the other set) that determine the communication channel.

Here are a couple of examples taken from Dretske [4] that demonstrate how all this works.

SWhilst it produces an optimal encoding in this case, in general this method is suboptimal, in that it does not
achieve the lowest possible expected code word length. Another method which does generally achieve the lowest
possible expected code word length is Huffman coding (http://en.wikipedia.org/wiki/Shannon-Fano_coding).


http://en.wikipedia.org/wiki/Shannon-Fano_coding

Example A boss asks eight of his employees to select amongst themselves one individual to perform
some task. Once this person is selected, they will inform the boss of their choice by writing the
selected person’s name down on a piece of paper and sending it to the boss. Each employer
is uniquely named and each has an equal probability (%) of being selected using some random
selection process. The information source that is the message generating selection process gives a
reduction of 8 possibilities to 1 and it generates 3 bits of information; its entropy (H ), the average
amount of information associated with the source S is 3 bits, calculated as:

H=— ZPr(i) x logyPr(i) = 3 bits
i=1

for each of the n possible outcomes/symbols i.

There is no noise/equivocation in this communication system (each message can be traced to
one outcome) so the amount of information received equals the amount of information generated.

Example A small modification is made to the previous example so that equivocation is greater
than zero. Everything is the same except that for some reason, the employees decide that should
Barbara be selected as a result of their selection process, they will write Herman’s name down on
the note instead. So the message ‘Herman’ would now be used if either Herman or Barbara were
selected. This equivocation (that ‘Herman’ cannot be traced to one unique outcome) affects the
information of the source, as the following calculations will demonstrate.

For each source event s; and for some message r,, the equivocation associated with r, is calcu-
lated as:

n
E(ry) = — ZPr(si]ra) X logsPr(si|ra)
i=1

The average equivocation associated with a source is the probability-weighted sum of the equiv-
ocation associated with each message:

E=-) Pr(r) x E(r;) (2)
=1

for each of the n messages r;.

When the channel is perfect, equivocation is 0; either Pr(s;|r;) takes the value of 0 or logyPr(s;|r;)
takes the value of 0.

If the channel is completely random, then Pr(s;|r;) = % for each message and equivocation is
maximum (i.e. the equivocation equals the amount generated from the source), so no information
is carried. In this scenario, the calculation would be:



E = (8x % X —(8 x g X logQ(é)))
E = (1x—-(8x§x=3)

E = (1x—-(1x-=3)

E = 3

In our current example, equivocation is somewhere between the maximum 3 and minimum O.
Since the message ‘Herman’ is responsible for the non-zero equivocation (all other messages have
zero equivocation), we only need to calculate E() for when r is ‘Herman’ (rg). This will involve
the outcomes ‘Herman’ (H) and ‘Barbara’ (B)

E(rg) = —[Pr(B|rg)logyPr(B|ry) + Pr(H|rg)logyPr(H|ry)]
Blrn) = —(bx—1)+ (L x 1))
E(’I’H) = 1

Since ry will appear if either H or B, Pr(rg) = %

Plugging this into Equation [2| we get
E = 1Ix1=025

Thus the average equivocation on the channel rises from 0 to 0.25 and the average amount of
transmitted information is now 2.75.

O]

Redundancy refers to the difference between the number of bits used to transmit a message
and the number of bits of actual information in the message. Whilst redundancy minimisation
through data compression is desirable, redundancy can also be a good thing, as it is used to deal
with noise and equivocation. As the simplest of examples, if John says ‘hello hello’ to Sally, the
second hello is redundant. But if the first hello becomes unintelligible due to noise/equivocation,
then an intelligible second hello will serve to counter the noise/equivocation and communicate the
information of original message. In technical digital communication, sophisticated error detection
and correction algorithms economically use desired redundancy.

Another factor to briefly mention is that the probability distribution of the source can be
conditional. In our examples, the probability distributions were fixed and the probability of one
outcome was independent of any preceding outcome. The term for such a system is ergodic. Many
realistic systems are non-ergodic. For example, you are about to be sent an English message
character by character. At the start there is a probability distribution across the range of symbols
(i.e. English alphabet characters). If an ‘h’ occurs as the first character in the message then the
probability distribution changes. For example, the probability that the next character is a vowel
would increase and the probabilities for ‘h’ and ‘k’ would decrease, effectively to zero, since there
are no valid constructions in the English language with ‘hh’ or ‘hk’. Whilst such complications and
complexities are covered by MTC, the details are unnecessary for our purposes and need not detain
us.

Once a message is encoded it can be transmitted through a communication channelﬁ Shannon
came up with the following two theorems concerning information transmission rates over commu-
nication channels. Let C stand for the transmission rate of a channel, measured in bits per second

5Research into the practical concerns of communication was a key factor for Shannon, whose interest resulted
from his work at AT&T Bell Labs. As a telephone company, they wanted to know what minimum capacities their
networks needed in order to efficiently handle the amounts of traffic (data) they were expecting to deal with.



(bps). Shannon’s theorem for noiseless channels:

Let a source have entropy H (bits per symbol) and a channel have a capacity C' (bits per second).
Then it is possible to encode the output of the source in such a way as to transmit at the average
rate of C'/H — e symbols per second over the channel where € is arbitrarily small. It is not
possible to transmit at an average rate greater than C'/H.[9, p. 59.]

To deal with the presence of noise in practical applications, there is the corresponding theorem
for a discrete channel with noise:

Let a discrete channel have the capacity C' and a discrete source the entropy per second H. If
H < C there exists a coding system such that the output of the source can be transmitted over
the channel with an arbitrarily small frequency of errors (or an arbitrarily small equivocation). If
H > C it is possible to encode the source so that the equivocation is less than H — C + € where €
is arbitrarily small. There is no method of encoding which gives an equivocation less than
H—-C.[9, p. 71]

As can be gathered, MTC covers several properties associated with an intuitive conception of
information:

e information is quantifiable

e information quantity is inversely related to probability
e information can be encoded

e information is non-negative

e information is additive

Ultimately however MTC is a syntactic treatment of information that is not really concerned
with semantic aspects. Although it deals with structured data that is potentially meaningful, any
such meaning has no bearing on MTC’s domain. Theories of semantic information on the other
hand deal with data that is meaningful and the use of such data by semantic agents. The following
examples serve to illustrate these points:

1. For MTC information is generated when one symbol is selected from a set of potential sym-
bols. As we have seen, entropy, the measure of information associated with a source, is
inversely related to probability. Given the English alphabet as a set of symbols, the string
‘xjk’ is less probable than the string ‘dog’, therefore according to MTC it has a higher en-
tropy/information measure. Despite this, the word ‘dog’, unlike ‘xjk’, is meaningful to an
English informee and potentially informative. So in this sense, with MTC gibberish yields
more information than probable yet meaningful strings.

2. Take a network over which statements in the English language are encoded into ASCII |Z|
messages and transmitted. The encoding of each character requires 7 bits. Now, consider the
following three strings:

" American Standard Code for Information Interchange: http://en.wikipedia.org/wiki/ASCII


http://en.wikipedia.org/wiki/ASCII

e the an two green four cat !7down downx

e Colourless green ideas sleep furiously

e The native grass grew nicely in spring
Although each message uses the same number of bits (7x38 = 266), the first is not well-formed
in accordance with the syntax of the English language and the second is well-formed but is

not meaningful. Only the third is well-formed and meaningful and hence can be considered
to be semantic information.

. Consider a basic propositional logic framework. Say that for each symbol in a statement 1

unit of data is required in its encoded message. Consider the following three strings:

e A-B
e AVB
e ANB
Each of these statements contains the same quantity of syntactic data. The first however, is

not well-formed. Whilst the second and third are well-formed, according to the meanings of
the connectives V and A, there is a sense in which A A B is more informative than AV B.

So MTC is ultimately about the quantification and communication of syntactic information or

data. It

approaches information as physical phenomenon, syntactically. It is interested not in
the usefulness, relevance, interpretation, or aboutness of data but in the level of detail
and frequency in the uninterpreted data (signals or messages). It provides a successful
mathematical theory because its central question is whether and how much data, not
what information is conveyed.[5, p. 561.]

Whilst it is not meant to deal with the semantic aspects of information, since MTC deals with the

data that constitutes semantic information it is still relevant and provides scientific constraints for
theories of semantic information and a philosophy of information [7]. Ideas from MTC have actually
found application in methods of quantitatively measuring semantic information in communication
[1]. Furthermore, MTC can serve as a starting point and guide for a semantical theory of information
Fj Chapman [2] argues for a stronger link between Shannon information and semantic information.
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